
A High-Performance Modular
Blockchain Supporting Multi-chain

Abstract. In this paper, we propose a high-performance modular blockchain that
supports a multi-chain structure. With the popularity of crypto increasing every
day, scalability has become the biggest challenge for permissionless blockchains. At
present, the common way to solve the scaling problem is to optimize its monolithic
structure, whereas, proposes the layered architecture by vertically segmenting
settlement, execution, and data availability into three different layers and optimizing
each one of them according to their specifics. also proposes a collaborative
ZK-Rollup and “Chaos Consensus” protocol. In addition, has designed a “Time
Crossing” cross-chain protocol fully compatible with the Cosmos ecosystem. With
the proposed structure can reach hundreds of thousands of TPS and eliminate
the need for external data availability for Rollup and NFT, thus providing an efficient
and reliable full-stack solution for the development of Web 3.0.
Keywords: · Blockchain · Collaborative-rollup · Chaos consensus · Data
availability sharding · Time crossing

1 Introduction
Since the introduction of Bitcoin [4], blockchain technology and the idea of decentralization
have gradually gained popularity. Ethereum [5] and its smart contracts gave almost
unlimited application for distributed ledger technology. However, the main concerns of
early blockchain technology were security and decentralization while transaction processing
capacity was not considered enough. The transaction processing capacity of about a dozen
TPS has greatly limited the further development of blockchain applications, considering
the present scenario, with the explosive growth of decentralized applications such as DeFi,
GameFi, and NFT, the number of transactions submitted to the permissionless blockchains
have increased exponentially. At peak traffic, the gas price of the Ethereum network can
reach thousands of Gwei and a single transaction can cost a user a hundred of dollars
in transaction fees. The transaction processing capacity of permissionless blockchains is
becoming a bottleneck for the continued growth of the decentralized economy.

In order to solve the problem of scaling in permissionless blockchain, numerous techno-
logical advancements and solutions have been proposed and applied [6,7,8,9,10,11,12,13],
some of which are based on multi-chain architecture and some on state sharding. Those
techniques alleviate the pressure of scaling to some extent. Still, this horizontal splitting
causes fragmentation of the whole system and sacrifices some security and decentralization
features and still does not solve the scaling problem. Meanwhile, there are also Layer
2-based scaling solutions, such as Rollup [15], Plasma [14], State Channels [16], etc, which
made progress in scalability but were not systematic and thorough.

From a functional point of view, the whole blockchain system consists of three parts:

info@cubexx.network

cubex

cubex
cubex

cubex

cubex

cubex Labs

cubex:

Architecture



• Execution of transactions;

• Verification and consensus on the results of transaction execution;

• Storage of the original data of the transaction.

The specifics of each part are different. Putting those together to optimize will inevitably
lead them to conflict with each other. Optimization can be achieved only if the entire
system is vertically split in the above functions according to their specifics.

Here we propose a next-generation modular blockchain with a multi-chain
architecture, that is secure, fast and scalable. We believe that makes a more
systematic and thorough vertical splitting of blockchain which is necessary to solve the
scaling problem mentioned above fundamentally. is designed with the execution
layer for transaction execution by using the ZK Rollup-based Validium solution and a
self-developed Collaborative Rollup solution as the system’s execution engine. In terms of
consensus, is designed with a settlement layer that is fully compatible with EVM and
Ethereum protocols and introduces a high-performance consensus protocol that supports
large-scale node participation. In terms of raw data storage for transactions, is
designed with a data availability layer that implements block data sharding and sampling
validation schemes to provide efficient and reliable storage services. For Rollup and NFT
applications, there is no need to rely on external storage solutions any longer since the
processing logic and data are fully managed. In addition, does not forget about
multi-chain support and has developed a decentralized cross-chain communication protocol
named “Time Crossing”, which supports cross-chain DeFi contract calls and is compatible
with Cosmos IBC protocol.

is a public blockchain that is designed to collaborate and promote the development
of the industry, taking into account the current needs of decentralized applications and the
future innovation and development. It takes high-performance underlying permissionless
blockchain as a new starting point, realizes the ultimate performance optimization of
single-chains in phases, supports and promotes the development of Web 3.0 in modular
layers, solves storage pain points, forming a permissionless blockchain with complete
underlying capabilities that everyone can participate in. Furthermore, it actively leads and
participates in the development and construction of decentralized cross-chain protocols
to form a multi-chain network and integrate itself into the new world of interconnected
chains to become an indispensable part of the metaverse infrastructure.

Compared with other permissionless blockchains, is committed to making inno-
vations and contributions in blockchain scaling and cross-chain, and also addressing the
full-stack requirements of Web 3.0, with the following five core technical features.

• Modular layered architecture, built-in Rollup, and extreme scaling, supporting
hundreds of thousands of TPS;

• Pipelined optimized BFT consensus, combining high throughput, decentralization,
secure and fast transaction confirmation;

• Full compatibility with Ethereum protocols and EVM, supporting a seamless migra-
tion of applications within the ecosystem

• Built-in data availability solutions to address Web 3.0 full-stack requirements;

• Support DeFi cross-chain calls, multi-chain network structure and compatible with
Cosmos IBC, interconnecting all chains.

2

cubex
cubex

cubex

cubex

cubex

cubex

cubex

cubex



2 Overall Architecture
In the field of traditional permissionless blockchain scaling, there has been the Blockchain
Trilemma of decentralization, security and scalability that no current blockchain system
can simultaneously achieve.

believes that the solution lies in the fact that the traditional blockchain has
monolithic architecture, which means components are interconnected and interdependent.
You couldn’t just take a piece of it and plug it into something else.

To solve this problem, adopts a modular architecture which is divided into three
layers: Execution Layer, Settlement Layer and Data Availability Layer.

• Execution Layer: responsible for the execution of almost all contract-based transac-
tions and supports decentralized applications. It is the combination of ZK Rollup and
Collaborative Rollup, where the execution results are submitted to the settlement
layer and the settlement layer establishes undeniable security as well as objective
finality.

• Settlement layer: responsible for verifying and settling the execution results of the
execution layer and is also the asset layer, responsible for the management and
settlement of the assets on the chain.

• Data availability layer: focusing on data storage, it will store permanently high-value
data based on data sharding, and with data availability sampling technologies it can
support reliable verification for light clients.

In addition, relying on our Time Crossing cross-chain protocol, can also implement
multi-chain topology to meet the demand for application chains. Meanwhile, “Time
Crossing” is also compatible with Cosmos IBC to achieve cross-chain support for blockchains
in the Cosmos ecosystem and Cosmos Hub. The overall system architecture is illustrated
in Figure 1.

2.1 Execution Layer: Built-in Rollup High-speed Execution Engine
The execution layer is key to s scalability. achieves scalability by offloading the
expensive transaction process from on-chain to off-chain, while keeping its on-chain focus
on validating the results.

uses Rollup technology as the main implementation of the execution engine,
splitting the transaction process into two parts. The first is through combining a large
number of transactions executed off-chain, and the second is to submit them as one to the
main chain for validation. The original data of the transactions is packed and stored on
the chain.This reduces the amount of data being sent to the main chain and enables faster
and cheaper transactions and hundreds of thousands of TPS.

2.1.1 Rollup Technology Solution

Rollup technology mainly includes ZK Rollup and Optimistic Rollup, which are currently
the most mainstream Layer 2 scaling solutions for Ethereum. Both of them have different
advantages and limitations in the current application scenarios.

For Optimistic Rollup, it is fully compatible with EVM so it is very convenient for
existing Ethereum Dapps to complete the migration, but it relies on a long waiting period
for the transaction validation, and on-chain transactions take a long time to be confirmed.

For ZK Rollup, its security model relies on zero-knowledge proof of cryptography,
andon-chain confirmation of transactions can be completed as long as the relevant zero-
knowledge proof is verified However, due to the complexity of the zero-knowledge proof

3

cubex

cubex

cubex

cubex cubex

cubex



Figure 1: Architecture Diagram

technology, a fully universal and reliable zkEVM is not yet available. This leads to each
application having to develop its own zero-knowledge proof logic, making the development
and migration of applications much more difficult.

considers fast transaction validation critical and therefore prefers ZK Rollup as
our execution layer. will provide a ZK-Rollup SDK that integrates the zero-knowledge
proof generation and verification process components. has built-in templates for
common applications, including DEX and Lending, making it easier for developers to
integrate these capabilities.

In addition, has proposed its own Collaborative Rollup that is fully EVM-
compatible. It also offers fast transaction validation, aiming to provide a good alternative
to ZK Rollup until the zkEVM technology matures.

2.1.2 Data Availability Separation

During the transaction execution, only submits the results of the Rollup transactions
to the settlement layer instead of submitting the raw transactions to the settlement layer
like traditional Rollups. Before the results of the Rollup transactions can be submitted to
the settlement layer they must be submitted to ’s data availability layer first. ’s
data availability layer meets economic and data storage requirements, thus saving valuable
storage resources on the settlement layer, as shown in figure 2.

After the transaction set is submitted to the data availability layer and confirmed, the
data availability layer then sends back the proof of the availability corresponding to the
Merkle tree root of the current transaction set.

For Collaborative Rollup, this proof of availability can be “rolled up” with the trans-
action result endorsement and submitted to the main chain. For ZK Rollup, the proof
of availability is submitted to the chain along with the zero-knowledge proof, and this

4

cubex

cubex
cubex

cubex

cubex

cubex

cubex cubex



supports the Validium model of ZK Rollup.

Figure 2: Separation of data availability at the settlement layer

2.2 Settlement Layer: the Highest Performance EVM-compatible
Chain

The settlement layer is the core of the For the execution layer, the settlement layer is
the key to transaction fee and transaction confirmation. For the data availability layer, it
is even more important, as the entire process of block construction, proposal, confirmation
and transaction payment, are all driven by the settlement layer.

At the same time, the settlement layer is also responsible for cross-chain functions.
Assets from both application chains and other ecosystems flow into the through
the settlement layer. The settlement layer is developed from Ethereum but with
completely redesigned and optimized consensus and storage features, making it the highest-
performing EVM-compatible chain today.

2.2.1 Full Ethereum Protocol Compatibility

believes that Ethereum is the industry standard for blockchain applications devel-
opment. To attract more high-quality Dapps projects and developers to join the
ecosystem, has implemented the full Ethereum protocol in the settlement layer.

The virtual machine is not only fully compatible with EVM, but also keeps
up with the latest EIP’s so that developers can directly deploy the existing Dapps on
Ethereum to All the development tools developed on Ethereum, including Wallet,
Solidity, Remix, Truffle and Hathat, can also be directly used on the Chain.

is also compatible with almost all of the RPC interfaces of Ethereum, so developers
can switch to ’s application development at no cost and get the rewards for ’s
ecosystem development.

5

cubex

cubex
cubex

cubex
cubex

cubex
cubex

cubex
cubex

cubex
cubex cubex



2.2.2 Deep Performance-based Optimisation

s approach to performance optimization begins with the settlement layer. While it is
not responsible for executing specific user transactions, the settlement layer provides an
anchor and foundation for the entire system.

For this reason, has developed its own combined DPOS and random sampling
validator selection consensus mechanism, and a Pipelined Optimized BFT process to
achieve extremely high performance, true decentralization, and an excellent balance of
transaction throughput and instant confirmation. In addition, has modified a storage
synchronization and EVM execution cache based on EVM real-world actual performance
profiling, resulting in significant performance improvements.

2.3 Data Availability Layer: Massive Validators & Unlimited Scalability
To save the valuable storage space in the settlement layer, designed the data availability
layer to provide reliable on-chain storage for Rollup and various decentralized applications.
This allows the original transaction data corresponding to rollup and the actual material
corresponding to NFT do not need to rely on external storage protocols anymore. It can
be completely solved inside the Chain.

In addition, has designed the data availability layer with a Sharding architecture
to involve more nodes for increased decentralization and scalability. This allows a single
node to store only a chunk of data (shard) while a large number of nodes ensures data
availability. This solves the fundamental problem of increasing the number of nodes in a
blockchain without increasing storage capacity.

As a separate storage layer, s data availability layer has the following main features
compared to traditional blockchains:

• Only data needs to be stored on the chain, no transaction needs to be executed, also
there is no world state;

• Verification of a block does not rely on historical data;

• Only the settlement layer conducts unified management.

2.4 Cross-Chain: Full Interoperability of Assets and Messages
is based on a cross-chain protocol that allows assets to flow in different dimensions.

s cross-chain protocol is compatible with Cosmos IBC, making it easy to integrate
into the Cosmos ecosystem. At the same time, it supports not only cross-chain transfer of
assets but also cross-chain communication at the message level, laying the foundation for
multi-application chain structures and cross-chain calls between DeFi’s protocols.

In order to bridge the flow of assets between and any other chain, has built
an Oracle-based cross-chain bridge as a complement to the cross-chain communication
protocol when it is not applicable.

3 Collaborative Rollup
introduces collaborative rollup as an execution engine.

3.1 Security Model
Unlike the security of ZK Rollup, which relies on cryptographic algorithms, the security
model of Collaborative Rollup relies on the endorsement of a random group of verifiers,
which is the origin of the term collaborative. believes that a single verifier cannot be

6

cubex

cubex

cubex

cubex

cubex
cubex

cubex

cubex
cubex

cubex cubex

cubex

cubex



trusted, but a randomly selected group of sufficient verifiers can be. This security model is
consistent with the security assumptions of Polkadot and Ethereum 2.0.

Therefore, if the execution result of a transaction can receive the endorsement of more
than half of a randomly selected group of verifiers, we can consider the execution result of
the transaction to be trustworthy.

In addition, we establish a penalty mechanism for the case when a validator is found to
endorse an invalid transaction result. After any validator submits the malicious endorsement
to the chain as evidence of malicious behavior, the malicious validator will lose his stakes
and a part of the stakes will be rewarded to the validator who was the first to submit the
evidence.

3.2 Node Classification
Collaborative Rollup is divided into two roles in terms of protocol - one is an execution
node and the other is an endorsement node.

The execution node is essentially a high-performance, centralized EVM that works on
Layer 2 and keeps all the accounts and states of Layer 2. It needs to have an account on
the settlement layer and stake. It is used for fast and efficient execution of the transactions
and encapsulation of the execution results into an endorsement request that is sent to the
endorsement nodes.

The endorsement node is also the full node of the execution layer. If the stake of a
validator is more than a certain proportion, and he has registered in a specific system
contract, he can become a candidate for an endorsement node. In the registration process
you’ll need to register two public keys. One is a property related public key to protect
your belongings, the other is an endorsement related public key to sign an endorsement.

Then each epoch endorsement node-set will be randomly selected from these candidate
endorsement nodes. There can be a fixed number of sets of the endorsement nodes, and
the number of endorsement nodes in each set is constant.

3.3 Validation and Endorsement
As mentioned above, the execution nodes need to pack the transactions of the execution
layer and execute them. After each transaction is executed, changes will be made to the
current world state.

Like ZK Rollup, Collaborative Rollup also uses the shortened version of the addresses
and forms all states into a Merkle tree structure. The Collaborative Rollup adopts the
MPT of Ethereum, so that we can use the root of this tree to represent the current world
state of Rollup and can get Merkle proofs for specific states. With the above execution
environment, we can define below how to represent the execution result of a transaction.
To achieve separation of execution and verification, the execution result must be verifiable.
We define the execution result as follows.

As shown in the figure 3 above it contains the following main components.

• The Merkle tree consists of the original set of transactions and its root roottx;

• The state root before transaction execution rootpre−state;

• The post-transaction execution state rootpost−state;

• The read-set and write-set associated with transaction execution and the correspond-
ing Merkle proof for rootpre−state;

• Execution node signature.

7



Figure 3: Transaction execution results

As is shown in the figure 4, after receiving the endorsement request, the endorsing
node will first verify the signature, and the sender’s identity by its stake amount. Then
verify the corresponding Merkle branches of the read-set and write-set, and execute the
transactions in EVM with the read-set to get output values of the write-set, and most of
all combine the write-set with its Merkle branches before execution to update the state
tree root. It also verifies whether the final state root obtained at the end is consistent with
the one after execution in the endorsement request. If the above verification is passed,
then the BLS private key is used to sign all the parts except the original transaction set,
which is the endorsement of the execution result of this batch of transactions.

Figure 4: Endorsement of transaction execution results

3.4 Transaction Execution Flow
As mentioned above, when a node becomes an execution node and an endorsement node
by staking tokens, the endorsement nodes are randomly divided into multiple groups at
each epoch. After that Collaborative Rollup transaction processing can be performed in
the figure 5,

First, the execution node is responsible for receiving transactions from clients, and
after executing a batch of transactions, it packs the execution result as an endorsement
request in the way described above. Then, the endorsement request is broadcasted to
the corresponding set of endorsing nodes in the current epoch. After the endorsing node
finishes verifying the transaction, if the transaction result is valid, it will broadcast the

8



transaction after endorsing it and collect the endorsement of the current set of endorsing
nodes for this transaction. When an endorsing node collects more than half of the
transaction endorsements, it aggregates the signatures and broadcasts them together with
the endorsement contents to the settlement layer. At the same time, the execution node
itself can also collect the aggregated endorsements and send them to the settlement layer.
After verifying the aggregated signatures, the settlement layer updates the chain status
and completes the deduction of transaction payments and all endorsing nodes are rewarded
with transaction fees.

Figure 5: Collaborative Rollup transaction execution

If during the verification process an endorsing node finds a transaction is invalid, it can
also mark the transaction as invalid and then endorse it. After collecting enough endorsed
transactions, these endorsements can also be aggregated and sent to the settlement layer,
then the only invalid transaction will be fined without changing the on-chain state. Through
this mechanism we avoid the situation when execution nodes intentionally send invalid
transactions for endorsement, which could result in a waste of computing resources of the
endorsing nodes.

In addition, since each endorsing node verifies the transaction results, it is very easy to
detect malicious behavior of other endorsing nodes, including:

• Endorsing invalid transaction results;

• Marking valid transactions as invalid and endorsing them.

If an endorsement node finds malicious behavior mentioned above it can submit it as
evidence to the chain, then the malicious endorsement node’s stake will be slashed, and
the node that submits evidence can receive a reward.

4 Chaos Consensus
Consensus is the core components of blockchain, and uses a hybrid randomized
DPOS protocol, which we named “Chaos Consensus”. This protocol is based on the DPOS
consensus and introduces a random selection mechanism for nodes, which allows more

9

cubex



nodes to participate in the consensus and increases the decentralization of the system.
The BFT consensus mechanism is used among the consensus nodes to provide the system
with fast confirmation of transactions. In addition, the traditional consensus process is
disassembled into separate transaction sequence consensus and execution result consensus,
and together with the execution process, a pipeline mechanism is formed for transaction
processing, which greatly improves the overall throughput of the system.

4.1 Protocol Overview
“Chaos” consensus is a protocol used to select the set of nodes to propose and validate
blocks, which is an important mechanism to introduce more nodes into the system to
participate in the consensus process. The consensus process is divided into different epochs
according to a fixed number of blocks, and the same set of validators is used in one epoch
for proposing and validating blocks.

4.2 Validator Set Generation
As with the usual DPOS protocol, any node can become a qualified validator by staking a
certain amount of tokens to the system contract, and other users can stake their tokens
to a trusted validator and become a delegator. The stakes of each validator are the
sum of its own stakes and the delegation of other users. The system then ranks the
top 100 nodes according to the number of stakes by the validator and selects the set of
candidate validators. The top 15 nodes directly become the active validators, and then the
system randomly selects 6 active validators from the remaining 85 nodes based on a jointly
generated random number, forming a set of 21 active validators. The newly selected active
validators will come into effect in the next epoch. In addition, the number of candidate
validators can be increased as the node size grows in the future.

4.3 Random Number Generation Algorithm
The generation of random numbers has to be done in a decentralized scheme, and it is
also necessary that the generated random numbers are verifiable and that the random
numbers generated by all nodes are guaranteed to be consistent. Moreover, in the process
of generating random numbers, no single node can influence or even manipulate the
generation of random numbers.

The random numbers of the are generated in the MPC way, i.e., each participating
node first generates its own random numbers locally, and then the system uses certain
operations to generate a public random number based on the numbers generated by each
node. In order to ensure that each node cannot know the random numbers of other nodes
before generating its own random numbers, uses the cryptographic PVSS (Publicly
Verifiable Secret Sharing) scheme based on Shamir Secret Sharing in the random number
generation process. This scheme allows the current set of validators to collectively generate
a random number and uses cryptographic methods to ensure that no one can manipulate
the random number generation process. Process is:

• Validator D divides its secret S into n pieces (S1, ..., Sn) according to the threshold
t: encrypt it according to the public keys (Px, ..., PN ) of n participants respectively,
generate the corresponding commitment (zero-knowledge proof), and share all of the
information;

• Anyone can verify that the n value of D is valid without obtaining additional
information;

• If necessary, participants can decrypt the share with their private key, and then share
it with others;

10

cubex

cubex



• Anyone can reconstruct the secret RS after obtaining ≥ t decrypted shares, and
RS == S.

The generation of a common random number is performed at each epoch. The current
epoch uses the random numbers generated by the previous epoch.

4.4 Streamline Consensus
In traditional blockchain systems such as Ethereum, the block generation process consists
of several steps:

• The miner (block proposer) packs the transaction and executes it;

• The miner set the execution results to the block header;

• Block propagation;

• Other nodes execute the transactions in the block;

• And then validate the execution results of the block.

It can be seen that a transaction undergoes two serial executions from the time it is
packaged to the time it reaches network-wide consensus, in addition to a serial propagation
process, which has a lot of room for optimization. We take a closer look at the structure of
a block, which contains a batch of transactions and various Merkle roots associated with
the execution results. The transaction list mainly represents the sequence of transaction
execution, while the block header can be seen as the result of the block execution. We can
consider separating the consensus of these two into a transaction sequence consensus and
an execution result consensus.

4.5 BFT Consensus Flow
As shown in the figure 6, assuming that the block for consensus is block N , the BFT does
not consent to the entire block N , but the transaction list and some meta-data of block
N , and the block hash of block N − 2. After the BFT completes, the consensus on block
N + 1 continues, and block N is executed at the same time. In addition, since block N
carries the hash of block N − 2, the completion of consensus on block N also means the
completion of confirmation on block N − 2.

Figure 6: Pipelined processing of BFT, execution, and validation.

11



5 Data Availability Sharding
proposes a sharding mechanism based on block slicing, which splits a complete block

into a fixed number of pieces (shards) according to the storage size with certain encoding
rules. Each node can choose to store not only all the data, but also a fixed number of
pieces in a verifiable random sampling. In either case, the current storage block can be
verified, so that any node can become a verifying node by staking, allowing the whole
system to achieve greater decentralization. Moreover, since the validation node does not
need to store all the data, the overall capacity of the system increases with each node
added, thus providing good scalability.

The operation and management of the data availability layer relies on the settlement
layer, including the acceptance and payment of storage transactions, the packaging and
proposal of integrated blocks of the data availability layer, and the final confirmation of
this data availability layer block. In addition, the staking and management in the Data
Availability Layer validation nodes also rely on the settlement layer.

Nodes are classified into the following types at the network level in figure 7:
• Light nodes, which keep only the block header and can verify the availability of the

block data through sampling to determine whether to accept the block header;

• A sampling node, which stores the block header and a partial sampling of the block
and can validate the block;

• Full node, contains an entire copy of blockchain ledger verifies blocks and block’s
sharding, provides fraud-proof.

Figure 7: Data availability layer network architecture

5.1 Model and Assumptions
Network model assumptions

12

cubex



• Network topology assumptions: nodes are linked in a P2P way, and at least one of
the network connections of each honest node is from an honest node;

• Network delay assumption: The maximum delay of the network is D. If an honest
node obtains a certain data in the network at time T , other honest nodes can obtain
the same data until the time of T + D.

Security assumptions

• More than 2/3 of honest nodes across the network;

• Honest storage nodes store sampled slices of all validated blocks.

5.2 Proof of Data Availability
Each transaction in the data availability layer is actually a request to store a piece of data
that can be represented by its hash. The hash value of each transaction in the current
block can form a Merkle tree, the root of which is stored in the block header as the data
root of the current block. The Merkle path from the data hash of each transaction to the
data root of the current block is the proof of availability of the data corresponding to the
current data hash.

5.3 Block Production Flow
Since the protocol of the data availability layer does not need to validate transactions, but
only the parent hash is required to generate blocks, both sampling nodes and full nodes
can become validation nodes by staking a specific amount of tokens in the settlement
layer and validate the blocks through random sampling. The generation and validation of
blocks in the data availability layer are performed by the nodes in the settlement layer
by submitting the evidence related to the data availability layer to the blockchain in the
settlement layer.

First, the user broadcasts the storage transaction to the blockchain, and the current
settlement layer node packs the valid storage transaction into a data availability layer block
after the transaction is paid and verified, and then writes the storage paid transaction and
the storage block hash to the settlement layer block, where the data availability layer block
height and hash are written to the block header. The nodes in the data availability layer
are all light nodes in the settlement layer, and the validation of the currently proposed
block can be confirmed from the settlement layer block header. When the settlement
layer block containing storage payment is executed, the storage fee will be deducted from
the balance of storage transaction senders. But the fee will not be transferred to related
accounts temporarily, thus locking the storage payment.

In addition, the block body is the 2-dimension erasure code of the original data [1,3].
When a block is produced, it is sliced into k ∗ k pieces by size and then 2k ∗ 2k pieces are
generated by applying the 2-dimension RS (Reed-Solomon) code. Then the Merkle trees
are created for each row and column of each fragment, so there are 2k + 2k = 4k Merkle
trees, in the figure 8.

These 4k Merkle roots are finally formed into one Merkle tree, and the root of the tree
is used as the root of the whole block. Then the slices are broadcasted in a P2P way, and
for the full node all slices will be collected and restored and fraud proofs will be generated
for blocks that cannot be restored. For the sampling nodes, slices are randomly selected
for sampling according to a specific algorithm. When the sampling is completed, a random
sampling certificate is generated and it will be signed and broadcasted afterwards to the
settlement layer.

The settlement layer nodes collect the first c randomly sampled proofs that pass the
verification and then apply the zero-knowledge proof technology to compress them into

13



Figure 8: Block slicing and encoding of data availability layer

a single proof and submit it to the chain with the height, hash, and data root of the
current storage block as a transaction. After the settlement layer miner verifies the proof
and waits for 2D time after the data availability layer block is proposed, and no relevant
fraud-proof is found, the data availability layer block is considered valid and the above
transaction is packed into the next block. Then the related rewards will be distributed to
the settlement layer node of block proposing, storage nodes of providing selected sampling
proof and settlement layer node of submitting confirmation proof. The rewards come from
the deducted storage payments described above.

If, after 4D time, if enough proofs cannot be received from the data availability layer
or fraud-proof is received from full nodes, the block height will be null and the previous
storage fee will be returned. For the scenario with fraud proofs, all staking amounts and
rewards of the nodes in the settlement layer of the proposed storage block will be slashed,
and the full node in the data availability layer that provides the fraud proofs and the node
in the settlement layer that packages the fraud proofs receive the rewards.

The remaining data availability layer nodes obtain the current status of the data
availability layer blocks by synchronizing the settlement layer block header state.

5.4 Random Sampling Proofs Based on zero-Knowledge Proofs
After the sampling node has completed verifying the availability of the block, it needs to
sign the sampling results and send them to the settlement layer nodes. After the settlement
layer receives enough successful sampling results, it needs to pack them together into the
next block and pass those over to other settlement layer nodes for verification.

This requires the sampling node to provide proof of sampling, which able to

• Prove to the settlement layer node that it has performed the required number of
samples;

14



• Prove to the settlement layer that the pieces it sampled were chosen randomly in
certain rules, i.e., the randomness can be verified;

• Multiple sampling proofs can be aggregated into a small proof which can be verified
quickly.

For the first two requirements, consider the following structure

• Block header of the DA layer contains block number, block hash, Merkle root of all
fragments;

• Proofs of all Merkle sampling segments;

• Signatures for the above data.

In order to ensure that all sampling nodes can perform random sampling, Instead
of taking the first few fragments as their own sampling results, we need to verify the
randomness of the sampling. Consider a random number generator, and the random
number is seeded by the hash of the current block combined with the public key of the
node, i.e.,

seed = sha256(hashblock + publicKey)

In this way we can force the node to perform sample slicing corresponding to the first
random numbers generated by this random number generator, so that the entire block
slice is sampled uniformly in general, thus ensuring the data availability of the block. The
verification of the random sampling proof is as follows

• Verify that the block header is proposed by the settlement layer;

• Verify the signature to ensure that this proof is generated by the staking node;

• Generate the index of the random sample according to rules above and verify that
there is a sampling atindex position;

• Verify the Merkle proof of sampling.

Consider the third requirement above. Because the large number of random sampling
proofs have to be collected (around 100), it requires a method to compress these proofs for
faster verification. Consider the combination of proofs of availability and zero-knowledge
proofs. The above verification process can be expressed as a zero-knowledge proof circuit
system, where the hash of the verified block and the set of public keys of the sampling
nodes are public parameters and the set of sampling proofs are so-called private parameters
so that the produced proofs can be small enough to perform fast verification.

5.5 Fraud-Proof
The availability sampling of the above blocks only ensures that there are enough slices
(shards) in the network to recover the corresponding blocks. However, some of the data
in these slices might be invalid, and hence solving the above problem by fraud-proof is
necessary.

Fraud proof can be divided into proof of invalid transaction as well as proof of invalid
data encoding, and for the storage chain only the latter needs to be focused on. The
generation of fraud-proof relies on all the data, so it requires full nodes or a sampling node
that collects all the slices (shards) to generate it.

When these nodes collect enough fragments but cannot decode them correctly, they
need to broadcast these fragments and their Merkle proofs, which are the so-called fraud-
proof, then other nodes can verify them accordingly. The first submitted fraud-proof node
will be rewarded.

15



6 Time Crossing Protocol
believes that the future will be a world of interconnected chains. This is why

has designed and developed the “Time Crossing” cross-chain communication protocol to
facilitate collaboration with assets from multiple ecosystems. In addition, has built
a multi-chain structured network on top of the cross-chain communication protocols to
effectively meet the needs of application chains.

6.1 Cross-chain Validation
The key to cross-chain communication is how the target chain can effectively verify the
cross-chain messages sent by the source chain, and the Time Crossing cross-chain protocol
enables a decentralized, trustless way of cross-chain verification. To achieve this we need
to establish a root of trust between the two parties of the cross-chain. When establishing
a cross-chain relationship, both parties need to register the genesis block header into
the other chain. The block header contains valid consensus proof of the current block.
Therefore, the block header of the genesis block is the trusted root of both parties.

After that, both parties of the chains use it as the starting point to synchronize all
subsequent block headers in real-time, which means the relationship between the two
is equivalent to a mutual light node. Since the block header contains the set of valid
validators in the next time period, by tracing the block header, we can confirm the valid
validators set of each other’s blockchain, thus confirming the validity of all subsequent
blocks by following the block headers.

Once both sides of the chains have a mutually trusted block header, the verification of
cross-chain messages can be achieved. includes Merkle proofs of these state changes
when sending cross-chain messages. The other blockchain can use these Merkle proofs
to verify the validation of these state changes when verifying the messages and decide
whether to perform the corresponding operations on its side. This enables automatic and
decentralized cross-chain operations between the two blockchains, as in the figure 9.

Figure 9: Cross-chain validation

6.2 Multi-chain Structure
With the cross-chain protocol, has the ability to support multiple chain structures.
Applications can build their own application chains using the settlement layer as a template,

16

cubex cubex

cubex

cubex

cubex



allowing for greater customization, which is ideal for GameFi-related projects. In addition,
being multi-chain helps in scalability, as has theoretically almost unlimited scalability
through continuous relaying and bridging.

6.3 Cross Channel: Cross-chain Contract Calls
In addition to cross-chain assets, also supports cross-chain contract calls, meaning
that DeFi applications from one chain can be directly called from another chain. has
defined a Cross Channel protocol to handle contract calls between chains.

6.3.1 Shadow Account

Shadow Account is a key part of Cross Channel. As the name implies, it is a shadow
account of the source chain account in the target chain, which represents the source chain
account operating in the target chain. The Shadow Account is generated in a deterministic
way to ensure that the source chain account corresponds to the Shadow Account, as follows.

addressshadow = addressgenerate(sha256(prefix + addresssource))

The Shadow Account can be seen as a normal account of the target chain to participate in
transactions. However, Shadow Account does not have a private key, and thus differs again
from a normal account in terms of transaction validation. Shadow Account transactions
are generated from the cross-chain transactions. We can embed the cross-chain transaction
hash when generating Shadow Account transactions, and write the generated Shadow
Account transaction hash in the execution result of cross-chain transactions. After that,
we can confirm the validity of the Shadow Account transaction by verifying the cross-chain
transaction.

6.3.2 Cross Channel Call Flow

When the Shadow Account corresponding to the source chain account is created, the
can start the subsequent cross-chain call operations. First, when the cross-chain contract
call transaction is packaged, the assets associated with the contract call are transferred
to the Shadow Account corresponding to the source chain account, and then the Cross
Channel protocol creates a new equivalent transaction with the Shadow Account as the
initiator of the contract call. Then the new transaction interacts with the target chain’s
DeFi applications as if it were a normal transaction on the target chain. Finally, the result
of the interaction is returned back from the Shadow Account to the source chain account,
as follows in figure 10.

The idea of the Cross Channel protocol is to automate the previously required multi-
step, the manual cross-chain contract calls in a verifiable way, solving the problem of
cross-chain DeFi composability.

6.4 IBC Compatibility
Since both Time Crossing and Cosmos IBC are based on the BFT consensus verification
in terms of cross-chain validation, this makes compatibility possible. Time Crossing is
fully compatible with the message format of the Cosmos IBC protocol at the cross-chain
protocol level, allowing two chains to call each other. In this way, can also access the
Cosmos Hub and seamlessly cross-chain with Cosmos’s various application chains, thus
integrating into the Cosmos ecosystem.

17

cubex

cubex
cubex

cubex

cubex



Figure 10: Cross-chain contract calls

7 Future Work
s future work includes the following areas: At the execution layer, will keep

up with the latest developments in zkEVM and promote the practicality, engineering
and open-source of zkEVM technology through self-research and collaboration.
will use it as the default execution engine for its chain. In the settlement layer, we will
advance our research of consensus protocols, including semi-synchronous networks and
pure asynchronous networks, to support the consensus of larger-scale consensus nodes in
various network environments. In the data availability layer, we will continue to reduce
trust assumptions and improve storage efficiency.

References
1. M. Al-Bassam, A. Sonnino, and V. Buterin, Fraud proofs: Maximising light client se-

curity and scaling blockchains with dishonest majorities, CoRR, vol. abs/1809.09044,
2018.

2. E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer,
and B. Ford. Scalable Bias-Resistant Distributed Randomness. In the 38th IEEE
Symposium on Security and Privacy, May 2017.

3. The Ethereum Team. A note on data availability and erasure coding. https://
github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding

4. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Available
at https://bitcoin.org/ bitcoin.pdf

5. The Ethereum Foundation. Ethereum Whitepaper. Available at https://github.com/
ethereum/wiki/wiki/White-Paper.

18

cubex cubex

cubex



6. E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, “Om-
niledger: A secure, scale-out, decentralized ledger via sharding,” in 2018 IEEE
Symposium on Security and Privacy (SP), pp. 19–34, 2018.

7. A. Kiayias, I. Konstantinou, A. Russell, B. David, and R. Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. Cryptology ePrint Archive,
Report 2016/889, 2016. http://eprint.iacr.org/.

8. George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies. In 23rd
Annual Network and Distributed System Security Symposium, NDSS, 2016.

9. P. Daian, R. Pass and E. Shi, Snow White: Robustly reconfigurable consensus and
applications to provably secure proofs of stake, Cryptology ePrint Archive, Report
2016/919, 2017.

10. M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: A Fast Blockchain
Protocol via Full Sharding.” Cryptology ePrint Archive, Report 2018/460, 2018.
https://eprint.iacr.org/2018/460.

11. Vasin, P. (2014) Blackcoin’s Proof-of-Stake Protocol v2, https://blackcoin.co/ blackcoin-
pos-protocolv2-whitepaper.pdf

12. Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 17–30, New York, NY, USA, 2016. ACM.

13. Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant
confirmation. https://eprint.iacr.org/2017/913.pdf.

14. Joseph Poon,Vitalik Buterin. Plasma: Scalable Autonomous Smart Contracts.
http://plasma.io/plasma-deprecated.pdf

15. Vitalik Buterin, “An Incomplete Guide to Rollups”, https://vitalik.ca/general
/2021/01/05/rollup.html

16. S. Dziembowski, S. Faust, and K. Hostakova, “Foundations of state channel networks.”
Cryptology ePrint Archive, Report 2018/320, 2018. https:// eprint.iacr.org/2018/320.

19


	Introduction
	Overall Architecture
	Execution Layer: Built-in Rollup High-speed Execution Engine
	Settlement Layer: the Highest Performance EVM-compatible Chain
	Data Availability Layer: Massive Validators & Unlimited Scalability
	Cross-Chain: Full Interoperability of Assets and Messages

	Collaborative Rollup
	Security Model
	Node Classification
	Validation and Endorsement
	Transaction Execution Flow

	Chaos Consensus
	Protocol Overview
	Validator Set Generation
	Random Number Generation Algorithm
	Streamline Consensus
	BFT Consensus Flow

	Data Availability Sharding
	Model and Assumptions
	Proof of Data Availability
	Block Production Flow
	Random Sampling Proofs Based on zero-Knowledge Proofs
	Fraud-Proof

	Time Crossing Protocol
	Cross-chain Validation
	Multi-chain Structure
	Cross Channel: Cross-chain Contract Calls
	IBC Compatibility

	Future Work



